A dual-core highly programmable 120dB image sensor

OUTLINE

- HDR: concepts and technical solutions
- HDPYX sensor architecture
- HDR Characterization results
- Perspectives
OUTLINE

- HDR: concepts and technical solutions
- HDPYX sensor architecture
- HDR Characterization results
- Perspectives
Why HDR?

- HDR stands for High Dynamic Range:
- In Imaging, HDR is not a new concept

Ansel Adams, Snake River, 1942

EI 2016, San Francisco
Why HDR?

- HDR stands for High Dynamic Range:
- In Imaging, HDR is not a new concept

Ansel Adams, snake river, 1942
Why HDR?

- In nowadays digital imaging, the need of HDR surpasses digital photography.

- Is it a key issue for many applications such as:
 - Scientific
 - Space
 - Security
 - Automotive
 - …

- The dynamic of the scene is very variable / unknown.

- Several solutions have been developed through years.
HDR: what we are looking for?

- Constraints of scientific application:
 - No tone-mapping: HDR must extend sensor output dynamic
 - Linear solution
 - HDR image in one shot

- Furthermore:
 - A digital system
 - A fully integrated solution
HDR: several exiting solutions

<table>
<thead>
<tr>
<th>HDR solution</th>
<th>Multiple integration times</th>
<th>Multiple resets</th>
<th>Logarithmic</th>
<th>Multiple readout gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>Yes</td>
<td>PWL</td>
<td>log</td>
<td>Yes</td>
</tr>
<tr>
<td>CDS</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SNR</td>
<td>+</td>
<td>-</td>
<td>--</td>
<td>+</td>
</tr>
</tbody>
</table>

Complexity

- Pixel: Low-medium
- Readout: Low

Main drawbacks

- Several asynchronous scene taken, several images to combine. Risk of motion blur, large memory needs
- Dispersion of the reset voltage can create artefact in reconstruction, if furtive event occurs during reduced well the signal is partially lost
- Low sensitivity at low light levels
- Higher area and power consumption

HDPYX sensor solution

But In one frame only

One output chain

EI 2016, San Francisco
OUTLINE

- HDR: concepts and technical solutions
- HDPYX sensor architecture
- HDR Characterization results
- Perspectives
HDPYX: Sensor architecture

• A sensor designed for scientific imaging
• 2800x1088 actives pixels
• 10µm pixel pitch
• up to 100 FPS
• 20 bits parallel data
• **Processor based, instrument driven operating modes:**
 o Rolling shutter
 o Global shutter
 o Low noise global shutter
 o Global reset
 o Integrating while read out (RWI)
 o Triggered acquisition
 o Triggered read out

EI 2016, San Francisco
HDPYX: Sensor architecture

Dual 32 bits processors with dedicated tasks
Using on-chip dual processor allows to perform on the fly image processing:

- Offset corrections
- Programmable digital gain and offset
- HDR Interpolation filter for saturated pixels compensation
- HDR reconstruction filter (internal compensation of dual integration and/or dual gain mode)
HDPYX: Sensor architecture

Dedicated peripheral for on-the-fly reconstruction
HDPYX: Sensor architecture

- **Pixel design:**
 - In pixel dual gain
 - 6T pixel based
 - Global or rolling shutter
 - 2 gains in pixel

 - Ensures charge conservation!
 - Automatically switching gain during readout
 - Single readout chain

EI 2016, San Francisco
HDPYX: Sensor architecture

- Pixel design:
 - In pixel dual gain
 - 6T pixel based
 - Global or rolling shutter
 - 2 gains in pixel
 - Ensures charge conservation!
 - Automatically switching gain during readout
 - Single readout chain

⇒ 90dB linear dynamic range
HDPYX: HDR features

- **Dynamic range extension:**
 - Exposure time is changed line by line in a single image capture
 - Programmable integration time ratio
 - Interpolation filter to correct saturated values
 - Improves dynamic range up to 120dB

⇒ Single frame, single output, no post treatement required

EI 2016, San Francisco
OUTLINE

- HDR: concepts and technical solutions
- HDPYX sensor architecture
- HDR Characterization results
- Perspectives
HDPYX: performances

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Low gain</th>
<th>High gain</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full well Capacity</td>
<td>85000</td>
<td>10500</td>
<td>e-</td>
</tr>
<tr>
<td>Temporal noise in darkness</td>
<td>25</td>
<td>2.6</td>
<td>e-rms</td>
</tr>
<tr>
<td>Conversion factor</td>
<td>12</td>
<td>125</td>
<td>µV/e-</td>
</tr>
</tbody>
</table>

EI 2016, San Francisco
HDPYX: performances

- Noise (1/f limited at source follower):

 ![Graph showing Temporal Noise VS I_{COL} in ERS, GH](image)

 - Trade noise for speed if needed
 - Nominal operating point

EI 2016, San Francisco
HDPYX: performances

- SNR over single TinT: shot noise limited

![SNR graph](image-url)
HDPYX: performances

- Image lag: below 1 e-

EI 2016, San Francisco
HDPYX: HDR images

Using only low gain
OUTLINE

- HDR: concepts and technical solutions
- HDPYX sensor architecture
- HDR Characterization results
- Perspectives
Perspectives

- Sensor will be deployed in hyperspectral/multispectral systems

- Sensor platform offers wide variety of customization:
 - Back side thinning for UV enhancement
 - NIR enhancement
 - Thick EPI for direct Xray sensing
 - Color or Monochrom versions…
 - Custom packaging for specific applications
Future work

- Pyxalis is also working towards lower noise via a collaboration with the CEA-LETI (cf IISW 2015 paper). First measurements show temporal noise of 0.4 e- RMS

- Pyxalis will further develop processor based approaches in custom designs with for instance the possibility to upload proprietary code, new peripherals, etc.