Digital integration: a path to lower system cost in imaging systems

Benoit Dupont, Pyxalis, booth 2042
PYXALIS
in a few words...
PYXALIS is a high-end CMOS Image Sensor supplier & Design house

A few figures:
- Founded in: 2010
- Team: 20 people
- Experience: >150 man-year experience in CMOS image sensors

Located in **Grenoble**, France, in the «Imaging Vallée»:
700sqm offices, state of the art design center, full EO characterization
Pyxalis is a custom image sensor supplier in the field of:

- Medical
- Security
- Machine Vision
- Science
- Air and space born applications

With a strong emphasis on **High performance SoCs**
Digital integration, a path to lower total system cost

In consumer image sensor industry, the trend towards more compact systems is undeniable...
PYXALIS
Digital integration, a path to lower total system cost

In consumer image sensor industry, the trend towards more compact systems is undeniable...

What about industrial application?
What about industrial application?

The trend is also there, slower of course, due to:

- Development cost pressure
- Performance requirements, optical formats, etc…
PYXALIS
Digital integration, a path to lower total system cost

Yet, today a significant part of the camera functions can be performed by the imager itself:

- Auto white balance (AWB)
- Auto exposure control (AEC)
- Auto gain control (AGC)
- Edge sharpness enhancement
- Lens vignetting correction
- Color interpolation
- Gamma correction
- RGB to Ycrcb transformation
- Picture statistic

- Defect correction
- Automatic Black clamp/ calibration
- Row and column fixed pattern noise correction
- Stitching artifact corrections
- Binning subsampling,
- Multi ROI,
- Flip H&V and combined modes
- High dynamic range reconstruction
- Image formatting

➡ Smaller, cheaper FPGAs, smaller memories, etc…
Typically, on-chip sequencers are made using hard-coded synthetized logic:

VHDL CODE

Synthetizer
We propose a different approach: processor driven digital sequencing.
We propose a different approach: processor driven digital sequencing

But Why?

VHDL CODE

Source CODE

Synthetizer

compiler

Processor core
We propose a different approach: processor driven digital sequencing.

But Why?

- Significant advantages for custom design:
 - Great user flexibility
 - Faster simulation cycles
 - Easier debugging
 - Easier to fix (if required)
 - Easier reuse
 - Overall shorter design cycles
 - Lower design risks
 - Take over more camera functions
Digital integration, a path to lower total system cost

processor driven digital sequencing

- 32bits APS on-chip for maximum flexibility:
- Windowing / subsampling
- Integration time and mode management (ERS, GS, Snapshot, RWI/Overlapp)
- Black level correction, fine digital gains, etc.

www.pyxalis.com
Digital integration, a path to lower total system cost

processor driven digital sequencing

- Oriented towards machine vision:
PYXALIS
Digital integration, a path to lower total system cost

Technology limited clock rate, but:

- Multiple cores
- Dedicated peripherals
- Application specific cores
Example: Multiple cores

- To run different codes
- Branching and conditions sets by user with SPI
- ROIs, binning, subsampling, etc…
Example: Dedicated Peripherals: HDR reconstruction

Pixel gains (1..n) over 14bits

Real time HDR reconstruction

20bits linear output
Example: in the future, application specific cores:

- Run, modify, update client specific functions
- Uploadable code (SPI, external Eeprom…)
- Allowing camera maker to add value to the camera
Where are the limits to this approach?

- Imaging technology nodes are not state of the art in terms of digital performances

- Best is to combine:
 - an opto technology for the detection area
 - a digital technology node for processing

(Source LETI)
3D Stacking: doing it for the right reason

- Compactness ?
- Performance ?
- Cost ?
- Power ?
- Right trade-off with dual chips solution ?
Thank you!

Visit us on booth 2042!